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1. Requirements Specification with Test Benches 

 

For any design problem, engineers define many requirements which must be fulfilled by the 

final design. The individual requirements might be grouped based on domains such as 

performance, safety, spatial/geometric, ergonomic, etc. At this stage of the design process all 

requirements are written in text, and are frequently stored in a requirements management tool. 

 

In the OpenMETA tools, Test Benches are the executable versions of the requirements and 

are used to evaluate system designs against specific requirements. Each Test Bench contains a 

link to a system design (the “system under test” object). The system design can be a crude 

system mockup at the early stages of the design process, with placeholders for certain 

subsystems and components whose implementation is not yet clear. The decomposition of the 

system and its subsystems forms an architecture that can be extended to form a design space by 

adding new alternative components and subsystems, forming a design space. Even if the original 

system design is significantly augmented, all associated Test Benches will remain functional and 

can be used to evaluate all encoded requirements across all point designs generated from the 

design space. Thus, by defining Test Benches early and executing them periodically, the design 

space will continually evolve in a positive direction.  

 

In addition to the system under test, each Test Bench has a set of well-defined concepts: 

analysis tool setup, parameters, context models, metrics, and post processing scripts. A detailed 

description of each object is presented in this section. In short, the type of requirement dictates 

the context models and the choice of analysis tool; each analysis tool generates a set of artifacts 

(e.g., simulation results), from which metrics are extracted using post processing scripts. Metrics 

are typically numerical values (with SI units) that map to the textual requirements. For instance, 

“the vehicle must have industry-leading fuel efficiency” would translate to a numerical metric: 

40 mi/gal minimum. Lumped Parameter Dynamics Models are used to produce metrics for 

performance-type requirements. 

 

Lumped Parameter Dynamics (LPD) Models are either represented as Ordinary Differential 

Equations (ODEs) or Differential Algebraic Equations (DAEs) and are often used at the early 

stages of the design process to ensure fast turnaround time in analysis execution time and design 

space exploration. Generally, LPD models are higher abstraction and lower fidelity than Finite 

Element Analysis (FEA) models, which use Partial Differential Equations (PDEs). Several 

modeling languages and tools support Lumped Parameter Dynamics modeling, for example: 

Bond Graphs, 20-Sim, MatLab, Modelica, etc. Some of these tools require causal models, 

meaning that the flow of data is unidirectional, and pre-specified by the user; others can use 

acausal models, meaning that the user simply makes connections and the tool resolves the 

causality of data flow automatically based on the underlying physics of the connected models. 
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Within the scope of the AVM program, we chose to use acausal modeling languages
1
 for 

Lumped Parameter Dynamics systems. Acausal modeling comes with many benefits:  

- models are easier to maintain because they contain a concise equation-based description 

of the dynamics (i.e., a declarative mathematical description of the underlying physics) 

- cause-effect variables are bidirectional (users can quickly compose system models 

without concern to the direction of data flow) 

- it provides a physics-based modeling paradigm (i.e., ensures that all models obey the 

laws of physics) 

 

The initial OpenMETA implementation utilized Bond Graphs
2
, which is a domain 

independent acausal modeling language. Bond Graphs provided a flexible modeling paradigm 

and an easy way to understand models, but not all engineers are familiar with Bond Graphs, and 

even for domain experts it could be challenging to develop new models. Domain experts usually 

feel more comfortable in a modeling environment where the domains are clearly identified and 

defined. In the OpenMETA toolchain we finally chose to use Modelica models to capture the 

dynamics of component models for several reasons:  

- Modelica is a powerful object-oriented acausal modeling language 

- A Modelica library
3
 for ground vehicle design was provided by the AVM program 

- The Modelica community has developed and maintains the Modelica Standard Library, 

which provides domain specific components, connectors, sources, and sensors for many 

physical domains (e.g., electrical, mechanical, thermal, fluid) 

- There are multiple Modelica simulation tools (some listed here), both open-source and 

commercial, each of which provide several different DAE solvers  

- OpenModelica
4
 (open-source, free) 

- JModelica
5
 (open-source, free) 

- Dymola
6
 (commercial) 

- SystemModeler
7
 (commercial) 

- MapleSim
8
 (commercial) 

                                                      
1
Willems, Jan C. "The behavioral approach to open and interconnected systems." Control Systems, IEEE 27, no. 6 

(2007): 46-99. 
2
D.C. Karnopp, D.L. Margolis & R.C. Rosenberg, System Dynamics: Modeling and Simulation of Mechatronic 

Systems (5th edition). Wiley (2012). ISBN: 978-0470889084. 
3
 C2M2L was a project within the AVM program which resulted in a library of parametric components targeting the 

design of an amphibious assault vehicle 
4
D.C. Karnopp, D.L. Margolis & R.C. Rosenberg, System Dynamics: Modeling and Simulation of Mechatronic 

Systems (5th edition). Wiley (2012). ISBN: 978-0470889084. 
5
https://openmodelica.org/ 

6
http://jmodelica.org 

7
http://www.3ds.com/products-services/catia/capabilities/modelica-systems-simulation-info/dymola/ 

7
http://www.wolfram.com/system-modeler/ 

8
http://www.maplesoft.com/products/maplesim/ 

http://www.3ds.com/products-services/catia/capabilities/modelica-systems-simulation-info/dymola
http://www.wolfram.com/system-modeler/
http://www.maplesoft.com/products/maplesim/
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2. Composing Lumped Parameter Dynamics 

 

As we have presented in the previous section, a CyPhy Test Bench is the executable form of 

a system design requirement. Within a Test Bench, the system under test object is an AVM 

Design Model (ADM). AVM Design Models consist of AVM Component Models (ACMs) and 

describe the connections between the ACMs and any system-level parameters. An ACM contains 

one or more domain models (e.g., structural, dynamics, and manufacturability). For the purpose 

of capturing dynamics behavior each ACM contains one or more dynamics (e.g., Modelica) 

models. ACMs capture only the interfaces of the included dynamics models but not the 

implementations thereof (the interfaces are required for composition and instantiation from 

OpenMETA, but the implementation is stored in an external resource). Component authoring 

(i.e., curating
9
) can be time consuming process, and since the domain models already define the 

interfaces, the ability to programmatically create multiple ACMs from a library of existing 

domain models would be necessary to avoid duplication of effort. 

 

These lumped parameter system models consist of multiple component models, each of 

which captures the behavior of that component to some specified degree of fidelity, i.e., realism 

and accuracy. When engineers construct a component behavior model, they consider the typical 

operational boundary conditions along with the input/output energy and data flows, and 

guarantee the behavior of the component model only in that ‘typical’ range of expected 

conditions. These conditions can then be included with the model as a caveat
10

 in the form of 

required operating condition ranges (which may also be included with the final product
11

). Also, 

the engineer may choose to encode a particular level of detail into a model depending on the 

level of fidelity desired in the analysis results.  

 

When setting up an analysis to evaluate a certain design requirement, it is prudent to select a 

level of model fidelity for component ‘C’ which is appropriate for C’s effect on the outcome of 

that particular analysis. For example, if the purpose of the analysis is to quantify the performance 

of a vehicle’s suspension system while driving at 10 m/s on a bumpy road, it is computationally 

wasteful and inadvisable to use a high-fidelity engine model which captures the friction between 

the engine’s cylinder walls and the pistons; in fact, the entire drivetrain might be reduced to a 

simple torque source without drastically affecting the accuracy of results. However, when 

measuring the vehicle’s coolant temperature to compare the effect of different engine lubricant 

viscosities, it may be necessary to model the friction between cylinders and pistons to get 

accurate results (i.e., produce analysis results which have a high degree of fidelity to real-world 

behavior). To support varying levels of fidelity and enable rapid switching between different 

fidelity levels, ACMs can contain multiple dynamics behavior models, each targeting a separate 

                                                      
9
 The process of creating a CyPhy/AVM Component Model from one or more domain models. 

10
 For instance, a gasoline engine’s performance/power profile is valid only for a certain range of fuel octane rating; 

if the octane rating is too low, fuel detonation can occur, and the engine’s power output will suffer. 
11

 To follow the example from 
3
, many gasoline engines specify a minimum octane rating for the fuel. 
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fidelity level; the designer can quickly switch fidelity levels using an enumeration-type selection 

menu. 

 

 
Figure 1: Dynamics tool architecture diagram 

2.1 Component Curation 
 

As stated above, the AVM program drove the production of the C2M2L library containing 

Modelica models of components used in constructing amphibious armored vehicles. For this and 

other reasons (also stated above), Modelica models were selected to encode the dynamics 

behavior for ACMs. Thus, OpenMETA developers needed to curate Modelica models into 

CyPhy Component models in the process of designing, implementing, and testing the 

OpenMETA toolchain. Unfortunately, Modelica models can be complex to read and understand, 

even for an experienced user, for several reasons:  

- Inheritance - Modelica is an object-oriented modeling language, and allows model Y to 

extend model X, meaning that Y will inherit all the interfaces and implementation from X. The 

Modelica language specification allows for multiple inheritance, meaning that one model may 

inherit from several base models. Furthermore, each base model may inherit and accrue several 

generations of interfaces (and content).  

- Restricted data - Modelica has several types of restricted data types (e.g., protected and 

final) which should not be ‘set’ (i.e., modified) when using that model (i.e., instantiating it in a 

system assembly or referring to it for inheritance). 

- Parameter values - There are different methods of setting a parameter when instantiating 

a Modelica model (e.g., start=, fixed=), each of which may be invalid in certain situations and 

may yield different behavior. 

- Object types - Modelica has different model types (e.g., inner, outer, partial, etc.), each 

of which have non-obvious implications. 
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Given that each model may have multiple extends statements indicating inheritance from 

several models (each of which may also utilize extends), and each model in the chain is a specific 

type and may incorporate some restrictions on its data, understanding all implications and 

condensing the information to a flat, understandable format is non-trivial. Consequently, 

quantifying the interfaces of a Modelica model for the purpose of creating an analogous CyPhy 

representation is tedious and error-prone. The OpenMETA developers experienced this tedium 

with the component models from the C2M2L Modelica package, which contains complex 

models with multiple levels of inheritance. Compounding the problem is the fact that in order to 

build large-scale dynamics system models in CyPhy, users would need to curate entire 

component libraries from Modelica to the ACM format, and it was apparent that automating the 

process was critical for facilitating and streamlining the OpenMETA design flow. To address the 

issue, we created the Modelica Importer tool, along with the py_modelica_exporter utility tool. 

The Modelica Importer provides a user interface from OpenMETA to py_modelica_exporter to 

extract the relevant information from the desired Modelica packages/models, and to import the 

information into the CyPhy/ACM format, including support for creating multi-fidelity 

component models. 

 

The py_modelica_exporter module utilizes the OMPython module, a Python console 

interface for the OpenModelica compiler. OMPython opens and maintains an OMShell session 

(OpenModelica’s console application), sends user-specified commands, and gets the response. In 

many cases, that response is a string, which utilizes commas, parentheses, brackets, and braces to 

mark up the structure (a structure that is unique to the Modelica language specification). 

OMPython does have a parser to read the response string and extract Python-typed variables. 

When the parser fails, regular expressions can be used to convert the response string to a usable 

format, and py_modelica_exporter contains the implementation for these cases
12

. Also, 

py_modelica_exporter handles the recursion needed to trace multiple layers of inheritance, and 

checks all the Modelica data types as it goes, flagging any objects or attributes that should not be 

included in the CyPhy Component. It can load multiple Modelica packages in a single session 

and exports both package and model descriptions in a JSON file format, making it portable and 

useful in situations outside the scope of the AVM program. 

 

To recap, AVM Component Models can refer to one or more Modelica models. In order to 

associate a Modelica model with an AVM Component Model, the interfaces, connectors, and 

parameters must be extracted from the Modelica model, which can be time-consuming: multiple 

layers of inheritance combined with the Modelica language’s idiosyncrasies can make the 

manual task very tedious, even for a person who is familiar with both CyPhy and Modelica. To 

minimize the labor required for the user to curate a Modelica model and create a CyPhy 

Component model, the Modelica Importer curation tool was created. 

The Modelica Importer tool supports: 

- Importing one or more Modelica models from the Modelica Standard Library or a user-

defined Modelica library 

                                                      
12

 It is possible to create valid Modelica models which cannot be parsed by the OpenModelica compiler. 



 

6 

- The Modelica models can be imported as AVM Components (including multi-fidelity 

components) or AVM Test Components depending on the context in which the tool is invoked 

(Test Components are similar to Components, but are used only in Test Benches to define 

context) 

 

The Modelica Importer tool provides a usable, succinct interface to get information from 

Modelica models, and makes it possible to rapidly create multi-fidelity AVM Component 

Models based on existing Modelica libraries. Early in the OpenMETA development timeline, the 

amount of time for a veteran user to manually curate a typical C2M2L library component was 

measured in hours. Using the Modelica Importer, this same task takes a few minutes, a small 

fraction of the original time. The time savings is magnified for the curation of an entire 

component library, resulting in an orders-of-magnitude reduction in user effort. 

 

2.2  System Model Composition 
 

 
 

Figure 2: Dynamics tool data flow 

Once the user has a library of AVM Component Models, he can proceed to construct system 

assemblies and Test Benches, and it becomes possible and necessary to execute analyses. The 

CyPhy2Modelica model translator takes a CyPhy Test Bench model as an input and produces a 

composed Modelica system model. Prior to the CyPhy model’s translation, the CyPhy2Modelica 

tool checks the structure and content of the model to identify any Modelica syntax violations that 

can be caught without actually flattening (i.e., compiling) the generated system model. This 

check utilizes multiple rules, which are based directly on the Modelica language specification 

and (to some extent) the Modelica Standard Library. In order to save computational time for each 

CyPhy Test Bench, the user can define for that Test Bench the level of Modelica model 

complexity to be used when performing the simulation (assuming there are multiple dynamics 

models associated with the ACMs used in the Test Bench’s Top Level System Under Test). To 

support the Modelica model (fidelity) selection, the CyPhyFidelitySelector tool was 

implemented. Once the selection is done using the CyPhyFidelitySelector, the CyPhy Test Bench 

stores the selected fidelity level for each ACM class. Part of the CyPhy2Modelica translation 
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process is to query the fidelity settings from the CyPhy Test Bench and instantiate the 

appropriate Modelica model implementation within the generated system design. 

CyPhy2Modelica is a robust and well-tested tool with the following capabilities: 

- Any Components and subsystems without dynamics models (e.g., components with a 

manufacturing model or a 3D CAD model only) are identified and excluded from the generated 

models. 

- Generated models comply with Modelica Specification 3.2. 

- Generated models are succinct and light-weight, with minimal overhead.  

- A full Modelica package is generated, allowing the user to view all the associated models 

and sub-packages from a single entry-point. 

- When invoked as a standalone interpreter, CyPhy2Modelica exports all component 

alternatives as part of the generated Modelica package. 

- Generated Component models are annotated as replaceable, a Modelica keyword which 

allows the user to easily find and substitute any viable alternative model when viewing 

the generated system with native Modelica tools (e.g., Dymola). 

- Value flows between parameters are preserved in the generated Modelica models as 

variable aliases, and the translation of simple formulae is fully supported. 

- The spatial layout from the CyPhy model is preserved, which aids the user when in-depth 

debugging of generated models is necessary. 

- A traceability map between the CyPhy models and Modelica models is generated. 

- The source code of the translation tool was profiled and optimized to provide faster 

Modelica model code generation. 

- Support for versioned Modelica libraries. 

 

 
Figure 3: Diagnostics of dynamics models 
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A model diagnostic utility is provided in the form of a structural model checker including 

110 rules; prior to the model translation, the structure of the CyPhy model is evaluated against 

the checker rules. These rules include violations of Modelica syntax, in addition to semantic 

errors such as incompatible connections, self-connections, invalid value ranges, loops and type 

mismatches in value flows, etc. The checker results are summarized in the GME Console for the 

user based on the severity of the rule violations. As an additional option for pre-execution model 

diagnostics, generated Test Bench models can be checked for correctness using an external 

Modelica compiler, and the results are mapped back to the GME Console, with hyperlinks. 

 

3.  Cyber-Physical Dynamics  

 

The composition of physical system models from Component models was described in the 

previous section. The OpenMETA tools also support cyber-physical dynamics system model 

composition. To augment the existing physical systems with cyber components, controllers can 

be added to the system designs. Both physical models and controller models are captured by 

AVM Component Models. Controllers can be implemented and imported from (a) Modelica or 

(b) Simulink Stateflow. 

 

Modelica controller models are imported and associated with ACMs by the Modelica 

Importer tool as explained in the previous section. Simulink Stateflow controllers are translated 

to a Cyber Composition language and packaged as ACMs. The Cyber Composition language and 

the Simulink Stateflow model import process are presented in-depth in the ‘Software Design and 

Implementation’ section. Since these controller types are represented as ACMs in CyPhy, all 

OpenMETA design/analysis techniques are valid for both physical and controller Component 

Models, including discrete design space exploration, Test Bench execution, and parametric 

exploration. This provides an easy path for Cyber-Physical System (CPS) design. 

 

During the composition process of the system design described in the previous section, the 

cyber code generator (a set of model interpreters) is called for every ACM containing a Cyber 

Composition (i.e., Simulink Stateflow) model. Each such controller model is transformed into C 

code, wrapped into a Modelica model as an external C function, and instantiated in the generated 

system model. User-defined parameters and connections between all controllers and the plant 

model are generated by the CyPhy2Modelica tool to complete the Cyber-Physical dynamics 

model. After the composition is completed, simulation and other analyses (e.g., formal 

verification) can be performed on the generated model. 
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4.  Execution of Analysis 

 

The system model composition of lumped parameter dynamics models for a single design 

point was presented in the previous sections. These composed system dynamics models can 

immediately be simulated using a Modelica tool (e.g., OpenModelica or Dymola). The 

py_modelica Python package is used to script the simulation tasks and to save all simulation 

results in a consistent way, regardless of which Modelica tool was used. In addition to the raw 

simulation results, important system-level properties are extracted from the simulation results by 

user-defined post-processing scripts. If additional logic or another tool is required for executing 

the simulation or analysis tasks, those extra tools can be registered to the OpenMETA 

environment and associated with the CyPhy2Modelica model composer. The CyPhy2Modelica 

model composer applies the analysis tool selection, which is defined in the workflow as part of 

the Test Bench. Therefore, downstream analysis tools can utilize the generated dynamics models 

and do further analysis (e.g., structural, simulation, formal verification) on the composed 

dynamics models. All generated analysis or simulation results are visualized by the Project 

Analyzer. 

 

The OpenMETA tools allow lumped parameter system models constituting a single design 

point, frequently called a seed design, to be transformed into a design space. Within a design 

space, components may be replaced with alternative design containers, capturing design 

choices/trade-offs. For example, in a model of a drive line there is a choice in the selection of the 

engine and transmission used. These alternatives will yield a range of different design points, 

where each can be evaluated against the system requirements by executing Test Benches. 

Starting from a Test Bench, the Master Interpreter utility tool provides automation to repeatedly 

invoke the CyPhy2Modelica model composer on every selected design point (within the design 

space). This automation significantly reduces the time to compose dynamics models for 

simulation or formal verification when compared to traditional design approaches. Moreover, 

simulations are executed in parallel using the Job Manager
13

.  

  

                                                      
13

 See the Job Manager and Remote Execution section for further details on execution capabilities 
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5.  Parametric Exploration 

 

The design space exploration tool (DESERT) encodes architecture choices and discrete 

component alternatives for the entire system design. The OpenMETA tools also support 

parametric design space exploration through the Parametric Exploration Tool, which is presented 

in-depth in the ‘Parametric Exploration Tool’ section. The purpose of this tool is to facilitate 

several different parametric design techniques, such as parameter optimization, running a design 

of experiment, and doing uncertainty propagation for a single design point in the discrete design 

space. This section briefly describes and presents examples of how the Parametric Exploration 

Tool capabilities can be used in the dynamics domain. 

 

A Parametric Exploration model contains a CyPhy Test Bench, which has inputs (i.e., 

parameters) and outputs (i.e., metrics), and a parametric exploration driver object, which can be 

an optimizer, a parameter study (i.e., design of experiment), or a Probabilistic Certificate of 

Correctness (PCC) object. The CyPhyPET tool generates an executable experiment from the 

Parametric Exploration model. CyPhyPET invokes a domain-specific model translator
14

 (in this 

case, CyPhy2Modelica) to generate the executable Test Bench model (in this case, a fully 

composed Modelica system model).  In addition, CyPhyPET generates an executor wrapper 

(e.g., modelica_executor.py) around the Test Bench for automated execution with different input 

parameters provided by the selected driver. 

 

In the ‘Examples’ section, some use-cases of these PET experiment types are provided in the 

context of a driveline design problem.  

 

 

  

                                                      
14

 The domain specific interpreter must implement the ICyPhyInterpreter Interface, which is required to make it 

compatible with automation interpreters such as CyPhyPET, MasterInterpreter, etc. 
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6.  Design Data Visualization 

 

After dynamics system models (Test Benches) have been executed to generate simulation 

results, the Project Analyzer tool is used to visualize the results. The Project Analyzer provides a 

unified way to visualize results for all analysis tools, including the lumped parameter model 

simulations, through the Test Bench Manifest file. In addition to the metric values, simulation 

plots (i.e., time series of data) are also produced by the dynamics tools for selected variables: (a) 

metrics and (b) limit violations (examples are shown in the picture below). An in-depth 

description of the Project Analyzer is given in the ‘Project Analyzer’ section. 

 

 
Figure 4: Example simulation result (vehicle speed) 
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7.  Driveline Case Study 

 

 
 

Figure 5: Design process 

The ‘Use Case/Design Flow/Case Study’ section contains examples that span multiple 

domains and analysis tools. In this section, we present a possible design flow from the dynamics 

tools point of view, but not limited to the dynamics models. Our case study is the design of a 

vehicle driveline subject to a set of system requirements. The following sections walk through 

the stages of the design process for this driveline example to find the best possible design point 

with respect to the requirements. This use-case does not explore alternative architectures (e.g., 

hybrid driveline), but our example can easily be extended to include such alternatives. 
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7.1 Requirements 
 

The driveline model has 19 Automotive Performance requirements that are divided into 5 

subcategories: Speed, Acceleration, Range, Temperature/Cooling, and Fuel Economy. To 

illustrate the OpenMETA tool concepts, only 11 selected requirements are shown (Figure 6) 

from two categories: Speed and Acceleration. The Speed requirement category contains 5 

maximum speed requirements (forward speed, hill climb on different surfaces, and reverse 

speed) and 2 average speed requirements (one on highway using US06
15

 drive cycle profile and 

one under full speed forward drive profile). The Acceleration requirement category contains 

acceleration time to 20 km/h and 40 km/h, acceleration in reverse to 10 km/h, and acceleration to 

20 km/h during hill climb on a concrete surface. 

 

 
 

Figure 6: Results shown in requirement categories 

Each requirement has a threshold and an objective value. In order to meet individual 

requirements, the metric value (i.e., the output of the Test Bench) must meet the threshold; the 

objective value is used for scoring (i.e., ranking the design points based on the utility function). 

The threshold defines the minimum value that must be reached and the objective defines the 

ideal value; exceeding the objective may not have any increased value, if the design point has 

already maximized the score. 

7.2 Test Benches 
 

                                                      
15

 The US06 is a high acceleration aggressive driving schedule that is often identified as the "Supplemental FTP" 

driving schedule. (http://www.epa.gov/otaq/emisslab/methods/sc03col.txt) 

http://www.epa.gov/oms/emisslab/methods/us06dds.gif
http://www.epa.gov/otaq/sftp.htm
http://www.epa.gov/otaq/emisslab/methods/sc03col.txt
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As discussed above, CyPhy Test Benches are the executable versions of the requirements. 

Figure 7 depicts a CyPhy Test Bench model containing a driveline design, test components, 

environmental conditions, driver profile, 4 parameters (i.e., inputs), and 5 metrics (i.e., outputs). 

This Test Bench evaluates 5 of the requirements for a driveline design point. In order to evaluate 

other requirements, additional Test Benches are implemented in the OpenMETA tools; the 

collection of Test Benches that captures the entire set of requirements is defined as Set of Test 

Benches (SoT) as shown in Figure 8. 

 

 
Figure 7: Full Speed Forward Test Bench 

 
 

Figure 8: Set of Test Benches 
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By executing the SoT model, all requirements are evaluated for a single point design. The 

results of the Test Benches are shown against the requirements and requirement categories. As 

Figure 9 shows, only 3/11 requirements are met for this single design point. 

 

 
 

Figure 9: Results shown in requirement categories 
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7.3 Single Design Point (Seed Design) 
 

The single design point, often called seed design and used to hash out the initial component 

choices and general architecture, is built as an AVM Design Model (ADM) in CyPhy. The figure 

below shows the architecture, components and subsystems, of a single design point for the 

driveline model. The architecture consists of a cooling system, controllers (Engine Control Unit 

and Transmission Control Unit), left-hand and right-hand side drive (each includes a drive shaft 

and a final drive), two surrogate fluid models (air path and fluid sink), a battery, a fuel tank, an 

engine (power plant), and a transmission (gearbox). 

 

The key components from the Speed and Acceleration requirements category point of view 

are the engine and the transmission components. We focus only on these two key components to 

improve the performance characteristics of the driveline design in order to meet all requirements. 

The single design point in Figure 10 has a Deutz BFM1015M (290HP) engine and an Allison 

X200 4A (4 forward gears) transmission. It is also possible to consider different engine and 

transmission alternatives by using the OpenMETA tools and programmatically turn the single 

design point into a design space. 

 

 
 

Figure 10: Single design point for the driveline model 

7.4 Discrete Design Space 
 

The discrete design space resulting from the single design point has the exact same 

hierarchical breakdown structure. The discrete design space for the driveline model shows that 

for the engine and the transmission, users can consider alternative components. In other words, 

different engine and transmission AVM Component Models (ACM) can be added and all 

possible design points are encoded by this design space. The tables below summarize some of 
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the engine and transmission options and their important parameters that we considered based on 

publicly available datasheets from the manufacturers’ websites. The highlighted transmission 

and engine instances are used in the original seed design. 

 

Supplier Type Min HP Max HP # of forward 

gears 

# of reverse 

gears 

Max RPM 
 

Allison X200-4A 206.36 344.38 4 1 2800 

Allison X200-4B 239.86 399.32 4 2 2800 

Allison XT1410-4 473.02 787.92 3 1 2400 

Allison XT1410-5A 473.02 787.92 3 1 2400 

Allison XTG411-2A 213.06 355.1 4 2 2300 

Allison XTG411-4 340.36 566.82 4 2 2500 

 

Table 1: Transmission alternatives 

 

 

Supplier Type HP # of cylinders Angle Displacement (l) 

Caterpillar C9 280kW 375 6 inline 8.8 

Caterpillar C11 313kW 420 6 inline 11.1 

Caterpillar C15 444kW 595 6 inline 15.2 

Caterpillar C18 597kW 800 6 inline 18.1 

Caterpillar C27 597kW 800 12 V 27.03 

Caterpillar C32 709kW 950 12 V 32.1 

MTU MT883 644kW 864 12 V-90 27.36 

MTU 6V199 261kW 350 6 V-90 11.9 

MTU 6V199 335kW 455 6 V-90 11.9 

MTU 6V199 430kW 585 6 V-90 11.9 

MTU 8V199 530kW 720 8 V-90 15.9 

MTU 8V199 603kW 820 8 V-90 15.9 
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MTU 8VMT881 736kW 1000 8 V-90 18.2 

MTU 12VMT883 1103kW 1500 12 V-90 27.4 

MTU 6R106Euro3 240kW 325 6 inline 7.2 

Deutz BF6M1015M group A 290 6 V 11.91 

Deutz BF6M1015MC group A 385 6 V 11.91 

Deutz TCD2015V6M group A 440 6 V 11.9 

Deutz TCD2015V8M group A 600 8 V 15.9 

Cummins QSM 350HP FR20019 350 6 inline 10.8 

Cummins QSM 400HP FR20003 400 6 inline 10.8 

Cummins QSX 400HP FR10581 400 6 inline 15 

Cummins QSX 500HP FR10583 500 6 inline 15 

 

Table 2: Engine alternatives 

 

 
 

Figure 11: Discrete design space for driveline model 
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The discrete design space in Figure 11 contains 25 engine alternatives and 8 transmission 

alternatives yielding 200 configurations, if we explore all possible combinations as shown in 

Figure 13. Adding alternative components for every design container can quickly explode the 

number of configurations. As a direct result of the large number of configurations, the time 

required for executing all Test Benches (8 in this examples, but there could be many more) over 

the entire design space becomes impossible. Elaborating all possible configurations is not 

scalable and is unnecessary, because there are many engine/transmission combinations that 

cannot be physically realized. Using design space constraints, we can prune the combinatorial 

design space to a smaller (manageable) set of designs which allows us to elaborate only the 

viable configurations; this is a powerful technique, and saves precious time and computational 

resources. All constraint types are presented in the ‘Constraint-based Architecture Exploration’ 

section. For the driveline model we used two property constraints: the engine output power 

rating must be within the range of the transmission’s minimum and maximum input power rating 

as shown in Figure 12. 

 

 
Figure 12: Example of property constraints 

 

 
Figure 13: Number of possible configurations for design space 

 

Each constraint type is translated to the Object Constraint Language (OCL). After all 

constraints are translated to OCL and gathered, the design space exploration tool (DESERT) 
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allows users to apply some or all constraints, including the ability to group constraints and apply 

such a group. If we apply both transmission input power constraints the possible number of 

configurations (200) drops down to 67 viable configurations as shown in Figure 14. 

 

 
Figure 14: Number of configurations after all constraints applied 

 

The next step of this design process is to evaluate all requirements for every viable generated 

design point. 8 CyPhy Test Benches already exist for the original seed design. The OpenMETA 

tools support the reuse of Test Benches for an entire design space by changing the Top Level 

System Under Test (TLSUT) object in every Test Bench to point to the newly created design 

space container. This approach produces Test Bench templates for any design point within the 

discrete design space. A Set of Test Benches can also be used with a discrete design space to 

execute all Test Benches as shown in Figure 15 below. 

 

 
Figure 15: Set of Test Benches for the design space 

 

Running all Test Benches over a design space may take some time, but after all results are 

available the Project Analyzer tool is used to visualize all Test Bench results (e.g., metrics) 

across the discrete design space. The Project Analyzer tool helps to understand which designs 

meet the requirements and which ones do not (and by how much). Figure 16 shows each design 
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as a line on a parallel axis plot and the lines are color coded by green if the design meets the 

requirement and by red if the design does not meet the requirement. On each vertical axis the 

threshold values (red) and the objective values (green) are marked for each metric. A filter can 

be applied between for each metric and a subset of the designs get highlighted. The Project 

Analyzer supports color coding based on limit violations (see Figure 17) and based on ranking 

(see Figure 18). All of these capabilities guide the users to make decisions about which design 

points should be considered for further detailed analyses. In our use case we selected 

configurations 2, 4, 7, 30, and 43 for parametric design exploration. Note: the original seed 

design is configuration 41. 

 

 

 
Figure 16: Requirement violations for design points 

 

 
Figure 17: Limit violations for design points 
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Figure 18: Ranking of design points 

 

7.5  Parametric Design Space 
 

In the previous section the discrete design space exploration was presented in the context of 

the driveline model. The OpenMETA tools support parametric design space exploration through 

the Parametric Exploration Tool. The parametric analyses takes significantly more time than the 

discrete since the Test Benches are executed multiple times for a single design point. These 

parametric analyses are used to assess the robustness of the designs and to generate surrogate 

models for the Test Benches. For instance, even if a design meets all requirements using the 

mean values of component parameters and environment conditions, it is important to see the 

impact on the metric values (i.e., output of the Test Benches) if parameters (i.e., inputs of the 

Test Benches) have variations or if they can change within a certain range during normal 

operating conditions. 

 
Figure 19: Parametric design space exploration model 

 

A Probabilistic Certificate of Correctness parametric driver is set up for the Full Speed 

Forward Test Bench as shown in Figure ‘Parametric design space exploration model’. The grade 

and the mass parameters are defined as probability density functions (PDF), where the grade has 

a uniform distribution between a minimum and a maximum value and the mass has a normal 

distribution with a mean and a variance. Figure 20 shows the impact on the outputs (acceleration 
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to 20 km/h, average speed, and vehicle speed) of the Test Bench. The minimum values and the 

acceptable PCC target values are defined in the parametric exploration model by the user and 

they are visualized on the plots. The PCC value for each output is the area below the output pdfs 

within the minimum and maximum range. The results below are shown for a single design point. 

 

 
Figure 20: Results of parametric design space exploration 
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 7.6 System Robustness 
 

PCC experiments can be defined for multiple Test Benches as shown in Figure ‘Parametric 

design space exploration models’, which means a system robustness analysis is performed for 

multiple requirements. For each Test Bench one “joint” PCC value is computed based on the 

individual PCC values for each metric. The joint PCC is always a real number with a value 

between 0 and 1. 

 
Figure 21: Parametric design space exploration models 

 

The Parametric Design Exploration using PCC drivers can be applied for an entire discrete 

design space, but these analyses might consume valuable resources to (unnecessarily) perform 

in-depth analyses on design configurations which do not satisfy design requirements. Based on 

initial high-level system analyses, we have chosen only three Test Benches and five promising 

configurations (2, 4, 7, 30, and 43) to further analyze using PCC. The Project Analyzer visualizes 

the PCC results for multiple Test Benches and configurations in the form of a heat map. Figure 

22 depicts the robustness of each design point with respect to each Test Bench. Based on this 

figure, configuration 30 has the highest accumulated PCC value across all three selected Test 

Benches, therefore configuration 30
16

 is the most robust design in this set. 

                                                      
16

Configuration 30 uses the Cummins QSM FR20019 (350HP) engine and the Allison XTG411 2A transmission. 
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Figure 22: Results of parametric exploration over a discrete design space 

 

7.7  Surrogate Model and Prediction Profiler 
 

The OpenMETA tools support surrogate model generation from a parametric exploration 

model that contains a parameter study (i.e., design of experiment) driver. Generating surrogate 

models is computationally intensive, but after a surrogate model is generated, interactive 2D and 

3D plots can be generated for the users to predict the metrics within the parametric space where 

the surrogate model is valid. 

 

Configuration 30 was selected based on the PCC experiments. For configuration 30 a 

surrogate model was created by the OpenMETA tools. The results are shown in Figure 23. On 

the left-hand side, two parameters are selected to plot the coefficient of rolling resistance (Crr) 

and the frontal area of the vehicle. The prediction profiler estimates both the 0 → 20 km/h 

acceleration time and the maximum vehicle speed based on the selected input parameters. On the 

right-hand side, a 3D response surface is plotted where 0 → 40 km/h acceleration time is shown 

w.r.t. the coefficient of rolling resistance and the frontal area of the vehicle. Users can choose 

which parameters (inputs) and metrics (outputs) are plotted using the Project Analyzer. 
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Figure 23: Prediction profiler and constraint plot 

7.8 Conclusion 
 

The original driveline design point (seed design) does not meet the requirements as shown in 

Figure 24. This driveline seed design is turned into a design space and alternative engine and 

transmission components are added. The discrete design space generates 200 possible 

configurations, and after constraints are implemented 67 viable configurations are left in the 

pruned design space. 

 

 
Figure 24: Requirement evaluation for the seed design (maps to Configuration 41 in the design space) 

 

All requirements are evaluated over the 67 viable configurations in the discrete design space. 

Many design points meet all requirements, and 5 of them are selected for further parametric 
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design space analysis on system robustness field. Finally, configuration 30 is chosen to generate 

a surrogate model for the driveline design problem. The surrogate model is used to predict the 

key performance parameters of the system under different conditions. Figure 25 shows that all 

requirements are met for this driveline design configuration. 

 

 
Figure 25: Requirement evaluation for Configuration 30 

 

Using the OpenMETA toolchain comes with several benefits including: 

- all models are stored and maintained in one environment (CyPhy) 

- the component models can capture properties from multiple domains (e.g., dynamics and 

solid models; this is extremely advantageous when changing a single property value will 

affect behavior in multiple domains) 

- turning a single design point into a discrete design space is a fully automated process 

- if a new component type or instance becomes available from a supplier, then it is an easy 

and straightforward process to add it to the existing discrete design space 

- adding alternative components and creating alternative architectures requires minimal 

effort compared to the traditional design approaches 

- all Test Benches defined for a single design point are completely reusable over the 

resulting design space 

- the Test Benches can reference either a single design point or a design space that can 

evolve over time,  

- OpenMETA tools can automatically execute all Test Benches, and evaluate 

requirements at any point during the design process  
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8  Evaluation 

 

In the previous section, an end-to-end demonstration of the OpenMETA design flow was 

presented for a driveline design problem. Designers begin with a system mockup, which 

included a power plant (a diesel engine), a gearbox, drive shafts, final drives, and peripheral 

cooling and electrical components. This is typical design approach, in which a general 

architecture “prototype” is selected to satisfy the early system architecture requirements, and 

then the prototype is tested in many scenarios to evaluate the early choices. Those initial tests 

reveal that the prototype is not satisfactory, so it is augmented with alternative components (for 

the power plant and gearbox), in addition to constraints relating to the compatibility of the 

various component combination choices. All tests are executed for all viable configurations, and 

any configuration that fails to meet the requirements is eliminated from further consideration. 

Based on outstanding performance, a few configurations are selected for parametric sensitivity 

analysis (PCC) to evaluate the robustness of their performance. Finally, the most robust 

configuration is analyzed in a design of experiment using a surrogate model, which shows that 

configurations expected behavior over a range of possible input parameters in the form of a 

response surface and constraint plots. 

 

In the example above, it should be noted that the system architecture is identical across all 

200 configurations. Also, despite there being several (7-8) distinct component types in the 

design, only two are augmented with alternative instances; it would be a simple matter to add 

alternatives for the remaining component types. There are a few more important points to make, 

which may not be obvious from the description above. First, the initial system mockup does not 

need to use models of off-the-shelf components, as we did in the example; components or 

subsystems of the prototype mockup may be represented by crude approximations (e.g., 

polynomials or lookup tables). Moreover, those component or subsystem placeholders may also  

be used to represent distinct architecture alternatives. For example, the subsystem composed of 

gearbox, drive shafts, and final drives may be replaced by an electric drive train consisting of a 

generator, power converters, power transmission cables, and electric motors, while utilizing the 

same power plant to turn the generator input.  The system requirements can drive the design 

choices for any type of architecture, allowing designers to compare fundamentally different 

design alternatives, without ever building a physical prototype.  

 

The second point is also powerful: if a component or subsystem is not yet elaborated using an 

off-the-shelf component instance (or set of instances), the parametric analysis techniques (e.g., 

design of experiment using surrogate models) may be used earlier in the design process, prior to 

design space creation or exploration. In some cases, designers may have an idea for a component 

which currently does not exist or is not yet in mass production. For example, weight 

requirements on the final design, when combined with cost constraints on certain component-

types (e.g., a cost requirement necessitating re-use of previously acquired engines), may result in 

the conclusion that a new driveshaft and chassis material should be explored. In this way, the use 

of surrogate models and parametric prototypes may spark ideas for novel component designs.  
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Finally, the driveline example focuses completely on the lumped-parameter dynamics 

domain models.  In a real-world design problem, there is other domain behavior that must be 

evaluated, in addition to the cross-domain interactions. This brings to light another crucial 

benefit provided by CyPhy and the OpenMETA toolchain: all the techniques from the example 

above can be extended to all other domains, and new Test Bench types may target different 

domain requirements.  Using the Project Analyzer, the results from one domain analysis can be 

viewed alongside results from a separate domain, quickly revealing problems arising from the 

systems integration process.  Additionally, using Sets of Test Benches (SoTs), it is a simple 

matter to propagate the result from one domain analysis to be used as an input to another domain 

analysis. In a vehicle design example, a geometric model analysis will reveal the dimensions, 

mass, and center of gravity (CG) of a driveline design, which can then be automatically used in a 

dynamics analysis to evaluate the effects of those system properties and answer important 

questions: 

- How will various suspension components perform and affect ride quality? 

- Will the vehicle be agile in terms of acceleration, braking, and steering? 

- Given its dynamics performance capabilities, how easily will the vehicle roll over? 

Such questions can only be answered through cross-domain propagation and analysis, and it 

should be clear that design choices in one domain may affect performance in other separate 

domains in unexpected ways. The benefit provided by the OpenMETA design tools of 

automatically detecting and quantifying these cross-domain interactions when they are 

introduced cannot be overstated.  

 

The choice of Modelica to model the dynamics domain behavior satisfied several AVM-

related design objectives. Model and model library versions are easily tracked and updated due it 

Modelica’s succinct textual representation of physical behavior. The acausal (equation-based) 

format makes it possible to easily define new component models, and to compose systems of 

components logically and quickly without close scrutiny as to the directionality of connections. 

There are several Modelica analysis tools available for simulation execution, both free and 

commercial. These provide capabilities to verify model validity through strong type checking 

and through compile-time warning/error messages. Finally, there are many readily available 

model libraries, both open-source (e.g., C2M2L, Modelica Standard Library) and commercial 

(e.g., Modelon’s Vehicle Dynamics Library), which can easily be integrated with OpenMETA. 

 

The META design process and the OpenMETA tools can provide significant increases in 

productivity as presented above; one important contributing design objective was to minimize 

any overhead on model composition, generated models, and runtime. The Table 

‘CyPhy2Modelica model generation time and overhead’ summarizes the time required to 

generate Modelica models and the overhead on the number of equations compared to the original 

Modelica implementation for a few designs. Over all, the tools scale well with the size of the 

models, saving time by reducing laborious model development. The overhead introduced in the 

dynamics model composition and analysis tools is justified by the benefits to the user in the form 

of rapid virtual prototyping, model debugging capabilities, and large-scale automation of 

analysis execution. For example, the increased model generation runtime for the ‘Excavator with 
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Cyber controllers’ model is a result of the running three analysis interpreters in series, including 

compiling generated C code for the controllers. 

 

Model 

# of 

AVM 

Components 

(ACMs) 

# of Test 

Components 

Model 

generation 

time (s) 

# of 

generated 

equations 

# of 

equations 

original 

Modelica 

impl. 

Rolling 

Wheel 
3 3 0.4 44 44 

RI Circuit 4 2 0.6 44 44 

Driveline 15 2 1.2 4385 4385 

Driveline 

with design 

space 

15 2 1.4 4431 4385 

Driveline 

with suspension 
74 1 3.2 84445 N/A 

Excavator 31 9 2 11177 N/A 

Excavator 

with Cyber 

controllers 

55 13 22.2 11839 N/A 

Table 3: CyPhy2Modelica model generation time and overhead 

The dynamics tools were used extensively by beta testers, gamma testers, FANG 

competitors, and other AVM performers, in addition to use in the C2M2L Component curation 

process. Feedback from these use-cases was constantly incorporated by Vanderbilt developers to 

improve the robustness and usability of the tools. 

 


